Biology

Quantum-Inspired AI model helps CRISPR Cas9 Genome Editing for Microbes


A team of scientists at the Oak Ridge National Laboratory (ORNL), have embarked on a groundbreaking venture, leveraging quantum biology, artificial intelligence (AI), and bioengineering to revolutionize the effectiveness of CRISPR Cas9 genome editing tools. Their focus is on microbes, particularly those earmarked for modifications to produce renewable fuels and chemicals, presenting a unique challenge due to their distinct chromosomal structures and sizes.

Traditionally, CRISPR tools have been tailored for mammalian cells and model species, resulting in weak and inconsistent efficiency when applied to microbes. Recognizing this limitation, Carrie Eckert, leader of the Synthetic Biology group at ORNL, remarked, “Few have been geared towards microbes where the chromosomal structures and sizes are very different.” This realization prompted the ORNL scientists to explore a new frontier in the quest to enhance the precision of CRISPR tools.

The team’s journey took an unconventional turn as they delved into quantum biology, a field at the intersection of molecular biology and quantum chemistry. Quantum biology explores the influence of electronic structure on the chemical properties and interactions of nucleotides, the fundamental building blocks of DNA and RNA, within cell nuclei where genetic material resides.

To improve the modeling and design of guide RNA for CRISPR Cas9, the scientists developed an explainable AI model named the iterative random forest. Trained on a dataset of approximately 50,000 guide RNAs targeting the genome of E. coli bacteria, the model took into account quantum chemical properties. The objective was to understand, at a fundamental level, the electronic distribution in nucleotides, which influences the reactivity and stability of the Cas9 enzyme-guide RNA complex.

“The model helped us identify clues about the molecular mechanisms that underpin the efficiency of our guide RNAs,” explained Erica Prates, a computational systems biologist at ORNL. The iterative random forest, with its thousands of features and iterative nature, was trained using the high-performance Summit supercomputer at ORNL’s Oak Ridge Leadership Computer Facility.

What sets this approach apart is its commitment to explainable AI. Rather than relying on a “black box” algorithm that lacks interpretability, the ORNL team aimed to understand the biological mechanisms driving results. Jaclyn Noshay, a former ORNL computational systems biologist and first author on the paper, emphasized, “We wanted to improve our understanding of guide design rules for optimal cutting efficiency with a microbial species focus.”

Graphical Abstract https://academic.oup.com/nar/article/51/19/10147/7279034

Validation of the explainable AI model involved CRISPR Cas9 cutting experiments on E. coli, using a large group of guides selected by the model. The results were promising, confirming the efficacy of the model in guiding genome modifications for microbes.

The implications of this research extend far beyond microbial genome editing. “If you’re looking at any sort of drug development, for instance, where you’re using CRISPR to target a specific region of the genome, you must have the most accurate model to predict those guides,” highlighted Carrie Eckert. The study not only advances the field of synthetic biology but also has broader applications in drug development and bioenergy research.

The ORNL researchers envision collaborative efforts with computational science colleagues to further enhance the microbial CRISPR Cas9 model using additional data from lab experiments and diverse microbial species. The ultimate goal is to refine CRISPR Cas9 models for a wide range of species, facilitating predictive DNA modifications with unprecedented precision.

The study, supported by the DOE Office of Science Biological and Environmental Research Program, ORNL’s Lab-Directed Research and Development program, and high-performance computing resources, signifies a significant leap forward in the quest to improve CRISPR technology. As Paul Abraham, a bioanalytical chemist at ORNL, remarked, “A major goal of our research is to improve the ability to predictively modify the DNA of more organisms using CRISPR tools. This study represents an exciting advancement toward understanding how we can avoid making costly ‘typos’ in an organism’s genetic code.” The findings hold promise for applications in fields ranging from bioenergy feedstock enhancement to drug development, marking a pivotal moment in the evolution of CRISPR technology.

Sources

https://doi.org/10.1093/nar/gkad736

“Synthetic Biology’s Promise and Peril: Shaping the Future of Medicine

Image Credit: https://www.technologynetworks.com/drug-discovery/blog/how-is-synthetic-biology-shaping-the-future-of-drug-discovery-340290

As a recent and ever-changing form of medicine and science, synthetic biology is paving the way for the future of medicine. Defined as a “research and engineering domain of biology where a human-designed genetic program is synthesized and transplanted into a relevant cell type from an extant organism” (A.M. Calladine, R. ter Meulen, 2013), synthetic biology offers possible solutions to some of society’s most pressing medical issues. Through DNA sequence modification and genome editing, scientists have been able to edit genetic material in living organisms with tools such as CRISPR (Clustered regularly interspaced short palindromic repeats). This ability allows scientists to provide organisms with genetic tools that nature has not yet apportioned. CRISPR also allows for the creation of ‘living therapeutics’ and introduction of immunity cells into the human body. 

So, what does this all mean? Well, synthetically creating genetic tools has already allowed for a breakthrough in different areas of production, such as the ability for silkworms to produce spider silk, as well as genetically engineered food, such as cheese, plant-based meat, etc., some of which are already available on a market scale. This provides society with a more sustainable way of creating different materials, which may be necessary as we continue to experience the impacts of consumerism on our planet’s environment. Living therapeutics and immune cells can help treat patients with various diseases, including multiple forms of cancer, providing them with a better chance of recovery and survival. Synthetic biology also assisted in the mass production of certain COVID-19 vaccines by manufacturing the SARS-CoV-2 genome sequence. 

It’s clear that an abundance of benefits derive from the usage of synthetic biology. Consequently, as with most technological advancements, there is also a profusion of risks. A majority of these risks appear to be ethical and extremely dangerous. According to The University of Oxford, synthetic biology, although promising, gives biologists a concerning way of ‘playing god.’ Misusing synthetic biology could potentially destroy existing ecosystems and undermine our crucial distinction between living organisms and machines. The loss of this distinction could be catastrophic for humans’ view on the importance of different organisms and creates an ethical concern of prioritizing machines and technology over nature and living organisms. Synthetic biology also introduces the risk of the synthesization of known human pathogens, such as Influenza or Smallpox, which could be released in much more dangerous forms than what they currently are. Although some of these associated risks are unlikely, the potential danger they inflict could be devastating. 

When considering the sad reality of human greed, it is essential to question whether the findings of synthetic biology will continue to be used for good. If put into the wrong hands, the technology could cause the decimation of multiple existing species, ultimately jeopardizing the balance of our ecosystem. Synthetic biology also poses the genuine risk of bioterrorism, as creating hazardous and genetically mutated organisms could be maliciously and violently released. Control of this technology is seen more in richer first-world countries, creating an inequality regarding access and usage. This gives certain countries, such as the U.S., an extensive scientific advantage over other countries, which could be used at the expense of other nations. 

It is still being determined what the future of synthetic biology holds, but it is imperative that both the benefits and drawbacks are considered. Naturally, we hope synthetic biology continues to be used for the greater of humankind, but that could very easily and swiftly change. Therefore, and when considering that we are already in the midst of multiple ethical, moral, and environmental crises, it is necessary to be aware of the information we consume and promote, specifically regarding the ongoing evolution of technology and science. 

Public sees promise of synthetic biology, but wary | ZDNET

Image credit: https://www.zdnet.com/article/public-sees-promise-of-synthetic-biology-but-wary/ 

Sources

  1. https://www.practicalethics.ox.ac.uk/synthetic-biology 
  2. https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/synthetic-biology#:~:text=Synthetic%20biology%20is%20commonly%20viewed,type%20from%20an%20extant%20organism
  3. https://www.gao.gov/products/gao-23-106648#:~:text=Synthetic%20biology%20can%20modify%20or,have%20broadened%20its%20potential%20benefits
  4. Image Credit: https://www.technologynetworks.com/drug-discovery/blog/how-is-synthetic-biology-shaping-the-future-of-drug-discovery-340290

Unlocking Limb Regeneration: The Salamander’s Clue to Ending Phantom Pain

You wake up in the morning with some arm pain. Sounds pretty normal, no? But what if you were told that that pain was all in your head? Alright, well obviously it’s in your head, your brain is what detects the pain, but bear with me. What if your arm wasn’t… there? What if your arm hadn’t been there for years, only for you to still feel it being there despite this objective truth? If all of that applies to you, then you are a victim of phantom pain. 

Over 500 people lose their limbs each day, whether it’s through the brutality of warfare, a freak accident at a job, or otherwise. Of these individuals, approximately 80% of them experience phantom pain. Not to mention that all of them suffer some degree of reduction in quality of life and even mental health for some. For what seems like its conception, limbs and their loss seemed like an unfortunate reality of the world. We all are only given one pair of parts, if we lose them somehow, that’s on us. That’s it. No redos, no replacements, no takesies-backsies. 

But what if there were redos? What if there was a way to replace the irreplaceable? What if there was a way to grow the ungrowable? That may very be possible through researching an animal that most of us have yet to encounter in the flesh: the humble salamander. 

What makes the salamander so special lies in its capability to regrow its limbs in its entirety. It could lose all of its arms and legs: as long as the stump is not destroyed, it can regrow them again and again without fail. These were only possible through the salamander’s natural capabilities to salvage what was left and prevent the wound from festering. The blood vessels quickly contract and a layer of skin cells swiftly encase the wound site. This wasn’t what made the salamander’s capability to regrow limbs so odd though, it was that it had other parts of its body (namely the opposite side of the missing limb) chip in to regrow the lost part. Although it would sometimes appear in a slightly different place, it would, for all anatomically sound purposes, be a perfectly functional limb. 

Although humans and salamanders are not the same, we both possess some form of a regeneration factor (with the former resorting to healing and the latter resulting in completely regrowing a limb). It is just a matter of time before we transform our natural capability to heal into being able to regrow lost limbs, perhaps indefinitely. No more will those who are missing an arm or a leg through horrid circumstances have to suffer a poor quality of life. No more will they have to make do with painkillers and accept the never-ending pain. No more will they have to live their life to a fraction of their potential all because of an unfortunate sequence of events. With the help of some salamanders, these circumstances may very well become a thing of the past. 

Image Credit: CAS.org, depiction of limbs regenerating.

Sources

  1. https://acl.gov/sites/default/files/programs/2021-04/llam-infographic-2021.pdf
  2. https://www.montefiore.org/limb-loss-facts
  3. https://my.clevelandclinic.org/health/diseases/12092-phantom-limb-pain
  4. https://www.ucl.ac.uk/news/2014/jun/limb-regeneration-do-salamanders-hold-key

Synthetic Biology: A Brave New World of Cures and Cautions

As a recent and ever-changing form of medicine and science, synthetic biology is paving the way for the future of medicine. Defined as a “research and engineering domain of biology where a human-designed genetic program is synthesized and transplanted into a relevant cell type from an extant organism” (A.M. Calladine, R. ter Meulen, 2013), synthetic biology offers possible solutions to some of society’s most pressing medical issues. Through DNA sequence modification and genome editing, scientists have been able to edit genetic material in living organisms with tools such as CRISPR (Clustered regularly interspaced short palindromic repeats). This ability allows scientists to provide organisms with genetic tools that nature has not yet apportioned. CRISPR also allows for the creation of ‘living therapeutics’ and introduction of immunity cells into the human body. 

So, what does this all mean? Well, synthetically creating genetic tools has already allowed for a breakthrough in different areas of production, such as the ability for silkworms to produce spider silk, as well as genetically engineered food, such as cheese, plant-based meat, etc., some of which are already available on a market scale. This provides society with a more sustainable way of creating different materials, which may be necessary as we continue to experience the impacts of consumerism on our planet’s environment. Living therapeutics and immune cells can help treat patients with various diseases, including multiple forms of cancer, providing them with a better chance of recovery and survival. Synthetic biology also assisted in the mass production of certain COVID-19 vaccines by manufacturing the SARS-CoV-2 genome sequence. 

It’s clear that an abundance of benefits derive from the usage of synthetic biology. Consequently, as with most technological advancements, there is also a profusion of risks. A majority of these risks appear to be ethical and extremely dangerous. According to The University of Oxford, synthetic biology, although promising, gives biologists a concerning way of ‘playing god.’ Misusing synthetic biology could potentially destroy existing ecosystems and undermine our crucial distinction between living organisms and machines. The loss of this distinction could be catastrophic for humans’ view on the importance of different organisms and creates an ethical concern of prioritizing machines and technology over nature and living organisms. Synthetic biology also introduces the risk of the synthesization of known human pathogens, such as Influenza or Smallpox, which could be released in much more dangerous forms than what they currently are. Although some of these associated risks are unlikely, the potential danger they inflict could be devastating. 

When considering the sad reality of human greed, it is essential to question whether the findings of synthetic biology will continue to be used for good. If put into the wrong hands, the technology could cause the decimation of multiple existing species, ultimately jeopardizing the balance of our ecosystem. Synthetic biology also poses the genuine risk of bioterrorism, as creating hazardous and genetically mutated organisms could be maliciously and violently released. Control of this technology is seen more in richer first-world countries, creating an inequality regarding access and usage. This gives certain countries, such as the U.S., an extensive scientific advantage over other countries, which could be used at the expense of other nations. 

It is still being determined what the future of synthetic biology holds, but it is imperative that both the benefits and drawbacks are considered. Naturally, we hope synthetic biology continues to be used for the greater of humankind, but that could very easily and swiftly change. Therefore, and when considering that we are already in the midst of multiple ethical, moral, and environmental crises, it is necessary to be aware of the information we consume and promote, specifically regarding the ongoing evolution of technology and science. 

Sources

Battling Plastic Pollution: Unveiling Nature’s Tiny Heroes

Polyethylene, plastic for short. It’s used everywhere, from the humble water bottle to grand and towering airplanes. We all hear that plastic doesn’t decompose, but many of us adopt an “out of sight, out of mind” thinking process. But, all because you can’t see a problem doesn’t mean that it’s not there. 

Over 170 trillion plastic pieces are in our oceans currently, with that number exponentially skyrocketing. This causes several issues, primarily a negative impact on wildlife and ecosystems within the ocean (colloquially referred to as plastic pollution). 

Fish (among other aquatic creatures) run the risk of being constricted by plastic rings, eating miniature pieces of them, or even having them cut against their skin. Not only this, but the plastic itself is toxic, with it containing thousands of chemicals that are harmful for aquatic life but also anyone else who comes in contact with contaminated water, humans included.

Image credit: https://www.surfacemag.com/articles/plastic-research-toxins-carcinogens/, depicts a gigantic pile of empty plastic containers. 

Since the dawn of its creation, it was just assumed as an unfortunate reality that we had to accept: gain a powerful, versatile, and cheap material and sentence the oceans and all the life it maintains to the guillotine. After all, it would cost an arm and a leg (upwards of $150 billion specifically) to remove the majority, not even all, of the plastic. 

But what if human hands combined with those of Mother Nature? What if we called upon the meek insects that scurry on the floors we stepped on to remove this pollution? What if we found a solution to this problem, a cheap and readily available cure for this illness? Well, that may just be possible.

October of 2022 brought more than just the welcoming of Halloween, it also was the time of a critical discovery: a type of caterpillar whose spit could decompose plastic. This was oddly enough discovered by a hobbyist beekeeper named Federica, who placed these caterpillars (wax moth in particular) into a plastic bag and found out briefly afterward that they had escaped, leaving multiple holes as their tunnels to freedom. 

But first, let’s review how they were able to do that. They utilized two specific enzymes, or proteins designed to cause a biochemical reaction, named Ceres and Demeter. These were considerably faster at decomposing plastic than traditional means (e.g. fungi or general bacteria), which could take weeks at a time. 

Scientists are currently looking to harvest and mass-produce these enzymes to decompose plastic at a more global scale. Although this is still in the beta phase of testing, it does offer a multitude of questions. How much faster do these enzymes decay plastic than conventional means? Are there other enzymes like this? How long will it take before it can be synthesized and ready for mass engineering? 

But, it does offer something important: a step in the right direction. With the capabilities of science and the will of those who desire clean water free of plastic residue, anything is possible, just maybe with the help of some little bugs by our side. 

AI can now use the help of CRISPR to precisely control gene expressions in RNA

Almost all infectious and deadly viruses are caused due to their RNA coding. Researchers from established research universities, such as NYU and Columbia, alongside the New York Genome Center, have researched and discovered a new type of CRISPR technology that targets this RNA and might just prevent the spread of deadly diseases and infections.

A new study from Nature Biotechnology has shown that the development of major gene editing tools like CRISPR will serve to be beneficial at an even larger scale. CRISPR, in a nutshell, is a gene editing piece of technology that can be used to switch gene expression on and off. Up until now, it was only known that CRISPR, with the help of the enzyme Cas9, could only edit DNA. With the recent discovery of Cas13, RNA editing might just become possible as well.

https://theconversation.com/three-ways-rna-is-being-used-in-the-next-generation-of-medical-treatment-158190

RNA is a second type of genetic material present within our cells and body, which plays an essential role in various biological roles such as regulation, expression, coding, and even decoding genes. It plays a significant role in biological processes such as protein synthesis, and these proteins are necessary to carry out various processes. 

RNA viruses

RNA viruses usually exist in 2 types – single-stranded RNA (ssRNA), and double-stranded RNA (dsRNA). RNA viruses are notoriously famous for causing the most common and the most well-known infections – examples being the common cold, influenza, Dengue, hepatitis, Ebola, and even COVID-19. These dangerous and possibly life-threatening viruses only have RNA as their genetic material. So, how can/might AI and CRISPR technology, using the enzyme Cas13 help fight against these nuisances?

Role of CRISPR-Cas13

RNA targeting CRISPRs have various applications – from editing and blocking genes to finding out possible drugs to cure said pathogenic disease/infection. As a report from NYU states, “Researchers at NYU and the New York Genome Center created a platform for RNA-targeting CRISPR screens using Cas13 to better understand RNA regulation and to identify the function of non-coding RNAs. Because RNA is the main genetic material in viruses including SARS-CoV-2 and flu,” the applications of CRISPR-Cas13 can promise us cures and newer ways to treat severe viral infections.

“Similar to DNA-targeting CRISPRs such as Cas9, we anticipate that RNA-targeting CRISPRs such as Cas13 will have an outsized impact in molecular biology and biomedical applications in the coming years,” said Neville Sanjana, associate professor of biology at NYU, associate professor of neuroscience and physiology at NYU Grossman School of Medicine. Learn more about CRISPR, Cas9, and Cas13 here

Role of AI

Artificial intelligence is becoming more and more reliant as days pass by. So much so, that it can be used to precisely target RNA coding, especially in the given case scenario. TIGER (Targeted Inhibition of Gene Expression via guide RNA design), was trained on the data from the CRISPR screens. Comparing the predictions generated by the model and laboratory tests in human cells, TIGER was able to predict both on-target and off-target activity, outperforming previous models developed for Cas13 

With the assistance of AI with an RNA-targeting CRISPR screen, TIGER’s predictions might just initiate new and more developed methods of RNA-targeting therapies. In a nutshell, AI will be able to “sieve” out undesired off-target CRISPR activity, making it a more precise and reliable method. 

Microplastics are everywhere — but are they dangerous?

Originally perceived as a marine issue, with oceanographers estimating a total of 15–51 trillion microplastic particles floating on surface waters worldwide, scientists have recently discovered that these tiny particles can contaminate rivers, soils and air. Furthermore, these minuscule particles have been found in a range of food, human stool, and even made their way into some of Earth’s most remote regions; including the poles, the equator, and even Mount Everest.

Plastics are a group of materials, either synthetic or naturally occurring; used in numerous applications in our daily life. They are the third most abundant material, after concrete and steel, and are used in countless sectors; ranging from medicine to transport.

Microplastics are microscopic fragments of plastic debris, that usually emerge from plastic litter due to sunlight exposure, which causes the material to degrade and weaken over time; they can also come from plastic items due to wear and tear. For instance, up to 1.5 million microfibres, a type of microplastic, can be released per kilogram of clothing during a wash. Remarkably, even opening a plastic bottle can create thousands of microplastics. One may ask, are humans ingesting these minute particles?

The short answer is: yes, with the discovery of microplastics found in stool verifying this question. As of today, microplastics have been found in foods and drinks, mainly bottled and tap water, salt, dust, and more. According to a study conducted in Queensland, researchers studied samples of rice from different countries around the world, detecting microplastics in every sample; whether the rice was grown in Thailand, India, Pakistan, or Australia, and packaged in plastic or paper. In an interview, Dr Jake O’Brien, a lead author for Environmental Health Sciences, states “Washing the rice reduced the amount of plastic likely to be ingested. But the study used special filtered water for rinsing, and most households only have access to tap water; which contains microplastics.”

There currently isn’t enough evidence to say that microplastics are harmful, as the topic is relatively new. A lack of information and research surrounding the phenomenon is scarce, as scientists aim to establish an evidence base. Prof Ian Musgrave, a toxicologist at the University of Adelaide, expresses “Knowing if microplastics are harmful to humans is hard to untangle when we are exposed to so many other substances. While we are consuming things that have tiny amounts of microplastics, we don’t absorb them. But because we can’t demonstrate damage, that’s not a reason to be casual.” Additionally, this explains why multiple studies on the ingestion of microplastics by marine animals, can’t completely isolate the impact microplastics have against all the other pollution and pressure they are exposed to in the environment, as it’s difficult to perform.

Likewise, there are emerging studies on the effects of ingesting high levels of microplastics in rats and mice, concluding that high levels of microplastic accumulation can affect reproduction. Nevertheless, it is more likely that the smaller the particles the greater the potential to cause harm, as smaller specks have an easier chance of entering cells or tissues; however, quantifying these issues and understanding where they come from is a challenge.

While the debate is still ongoing as to whether microplastic could cause harm, you may still wish to limit your exposure. To limit your exposure, you can drink filtered tap water, and choose natural-based products over plastic for yourself and your environment will help reduce microplastic exposure. Overall, minimising microplastic exposure globally requires a substantial effort to limit the release of plastics, and microplastics, to the environment. Reducing plastic waste, washing your clothes less often, and bringing your own bag whilst shopping; all can contribute to limiting plastic release and even production; thus decreasing microplastic exposure.

Whatever the solution, it’s important that it’s better for both the planet and people.

Lab-grown meat: Incredible or Inedible?

Scientists are currently cultivating proteins from the stem cells of livestock and poultry in labs in a bid to create more sustainable meat, but will anyone want to eat it?

Lab-grown meat, although a promising concept, has been slow to hit the mainstream. The notion is to grow meat, within laboratory conditions, by extracting stem cells from live animals and installing them into a bioreactor (vessel-like device), where salts, vitamins, sugars, and proteins are added. The oxygen-rich temperature-controlled environment allows the stem cells to multiply dramatically; eventually differentiating into muscle fibres that cluster together, aided by scaffolding material.

Numerous start-ups and companies have invested millions into this innovative technology. Eat Just, valued at $1.2 billion, was founded by Josh Tetrick in 2011, and the company began the development of lab-grown chicken in 2016. “With the aid of a 1,200-liter bioreactor, the cells can develop into meat at a rapid rate with the whole process taking around 14 days. For comparison, the production of farm-based chicken is a 45-day process”, states the CEO of Eat Just. Evidently, lab-grown meat rivals the production of farm-based alternatives; by providing a more efficient development procedure.

Currently, the meat industry slaughters tens of billions of animals every year, and meat consumption is expected to increase by more than 70% by the year 2050; according to the Food and Agriculture Organisation of the United Nations. At the current state, lab-grown meat products will struggle to satisfy these demands. To put this into perspective, to produce enough meat to feed everyone in Singapore, Eat Just would need to use 10,000-litre bioreactors, over more this process is currently more expensive than traditional farming methods. However, with increased funding, it might soon become a reality.

Despite these challenges, the advancement of lab-grown meat products will continue, promising a wealth of benefits. Lab-grown meat is drug-free, cruelty-free, more environmentally friendly, and sustainable. One report estimates that lab-produced meats could lower greenhouse emissions by 78–96%, 99% less land use, and 82–96% less water consumption. It is, without a doubt, more sustainable than traditional meat farming.

In spite of all adversities, at the end of last year, restaurant 1880 in Singapore became the first in the world to serve lab-grown meat, after approval from the country’s food agency on the sale of cultured meat. This poses as a huge stepping stone for the future of lab-grown meat. One estimate by US consultancy firm Kearney suggests that 35 per cent of all meat consumed globally will be cell-based by 2040.

In an earlier interview, Josh Tetrick (founder of EatJust) expresses, “Working in partnership with the broader agriculture sector and forward-thinking policymakers, companies like ours can help meet the increased demand for animal protein as our population climbs to 9.7 billion by 2050.”

It is beyond dispute that the status quo is not sustainable. So, do we have the appetite for change?