Quasars Show that Time was Slower in the Early Days of the Universe

Artist’s rendering of the accretion disc in ULAS J1120+0641, a very distant quasar powered by a supermassive black hole with a mass two billion times that of the Sun. Image: https://en.wikipedia.org/wiki/Quasar

(Astronomy) A team of astronomers led by Geraint Lewis, the astrophysics professor at the University of Sydney’s School of Physics, have recently proven that time in the early days of the universe, roughly 1 billion years ago, was significantly slower than time at the present day. By looking at quasars, incredibly active supermassive black holes, the team was able to determine how much the present universe has sped up compared to the distant past. This claim also buttresses Albert Einstein’s General Theory of relativity, which states that the passage of time was slower for the distant universe in the past.

Five times slower. That’s how slow Professor Lewis’ team found time to be in the universe’s earliest stage. To quote Professor Lewis: “If you were there, in this infant universe, one second would seem like one second — but from our position, more than 12 billion years into the future, that early time appears to drag.”

This discovery will have a massive impact on other astronomers. Understanding the passage of time in the beginning of the universe can help them not only figure out the endgame of the universe, but also such questions as How was the universe formed? and Are there other universes besides ours?